FTDMP is a software system for running docking experiments and scoring/ranking multimeric models.
FTDMP was used in CASP15 by the “Venclovas” team (Vilnius University / Life Sciences Center / Institute of Biotechnology). The most novel and useful features of FTDMP are integrated VoroIF-jury and VoroIF-GNN methods.
FTDMP has two main entry-point scripts:
FTDMP uses several software tools that are included in the FTDMP package:
FTDMP also can use non-open-source docking tools that are not included in the FTDMP package, but can be easily installed separately:
Some features of FTDMP require aditional dependencies (that are easily available through “conda” package manager):
The benchmark dataset for protein-protein, protein-DNA, and protein-RNA docking is available at https://doi.org/10.5281/zenodo.10517524. It contains structures of three docking benchmarks, as well as docking tables. This dataset together with the FTDMP framework can be used for docking and scoring complexes, as well as evaluating new scoring functions.
If you use the FTDMP for your research, please cite the following articles.
FTDMP software, cleaned docking benchmarks and docking results are published here:
Scoring of protein-protein interfaces using the VoroIF-jury algorithm and details of this algorithm are published in our CASP16 article:
The currently recommended way to obtain FTDMP is cloning the FTDMP git repository https://github.com/kliment-olechnovic/ftdmp:
git clone https://github.com/kliment-olechnovic/ftdmp.git
cd ./ftdmp
To build all the included dependencies, run the following command:
./core/build.bash
To, optionally, make FTDMP accessible without specifying full path, add the following line at the end of “.bash_profile” or “.bashrc”:
export PATH="/path/to/ftdmp:${PATH}"
Download the Miniconda package:
cd ~/Downloads
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
Install Miniconda:
bash Miniconda3-latest-Linux-x86_64.sh
Activate Miniconda environment:
source ~/miniconda3/bin/activate
Install packages for using graph neural network-based scoring:
# install PyTorch using instructions from 'https://pytorch.org/get-started/locally/'
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
# install PyTorch Geometric using instructions from 'https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html'
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+cu121.html
# install Pandas
conda install pandas
# if you do not have R installed in you system, install it (not necessarily using conda, e.g 'sudo apt-get install r-base' in Ubuntu)
conda install r -c conda-forge
Test PyTorch installation:
python -c "import torch; print(torch.__version__)"
Install packages for using OpenMM:
conda install -c conda-forge libstdcxx-ng # needed for the compatible version of libstdc++
conda install -c conda-forge openmm
conda install -c conda-forge pdbfixer
Test OpenMM installation:
python -m openmm.testInstallation
As an alternative to manually installing packages, it is possible to use the environment configuration file envs/ftdmp_environment_for_conda.yml provided in the FTDMP repository.
For this, first download+install+activate Miniconda:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
source ~/miniconda3/bin/activate
Then create the environment from file:
conda env create -f ftdmp_environment_for_conda.yml
If no other name is specified, then the newly created environment will be called ‘ftdmp’.
Note that the usage of the provided configuration file results in installing Pandas, OpenMM, and the CPU versions of PyTorch and PyTorch Geometric. For CUDA-based PyTorch and PyTorch Geometric packages, the manual installation way, described the previous section, is recommended.
Scoring and ranking is done with the ‘ftdmp-qa-all’ script. Below is the breef description of ‘ftdmp-qa-all’ interface.
'ftdmp-qa-all' scores and ranks multimeric structures of proteins or nucleic acids
Options:
--workdir string * path to directory for caching and writing detailed results
--subselect-contacts string query to subselect inter-chain contacts for scoring, default is '[]'
--constraints-required string query to check required inter-chain contacts, default is ''
--constraints-banned string query to check banned inter-chain contacts, default is ''
--constraint-clashes number max allowed clash score, default is ''
--subselect-atoms-global string query to subselect atoms for global scores, default is '[]'
--reference string input structure file to compute CAD-score with, default is ''
--ftdmp-root string ftdmp root path, default is '' (autodetected from the calling command)
--conda-path string conda installation path, default is ''
--conda-early string flag to activate conda as early as possible
--conda-env string conda main environment name, default is ''
--processors number number of processes to run when scoring, default is 8
--sbatch string sbatch parameters to run scoring in parallel, default is ''
--score-symmetry string flag to score symmetry, default is 'false'
--external-scores string path to input file with external scores table, default is ''
--remap-cadscore string flag to use optimal chains remapping for CAD-score, default is 'false'
--crude-cadscore string flag to use faster but crude mode for CAD-score
--keep-top-fast number number of top complexes to keep after full scoring stage, default is 9999999
--keep-top-slow number number of top complexes to keep before slow full scoring stage, default is 9999999
--limit-voromqa-light number minimal allowed VoroMQA-light whole-stricture score, default is ''
--rank-names string rank names to use, or name of a standard set of rank names, default is 'protein_protein_voromqa_and_global_and_gnn_no_sr'
--ranks-top number number of top complexes to consider for each ranking, default is 300
--jury-slices string slice sizes sequence definition for ranks jury scoring, default is '5 20'
--jury-cluster number clustering threshold for ranks jury scoring, default is 0.9
--jury-maxs number number of max values to use for ranks jury scoring, default is 1
--output-redundancy-threshold number minimal ordered redundancy value to accept, default is 0.9
--plot-jury-scores string file path to output plot of jury scores, default is ''
--plot-jury-diagnostics string flag to plot jury diagnostics, default is 'false'
--write-pdb-file string file path template to output scores in PDB files, default is ''
--write-pdb-mode string mode for PDB scores output ('voromqa_dark' or 'voromqa_dark_and_gnn'), default is 'voromqa_dark_and_gnn'
--write-pdb-num number number of top PDB files with scores to write, default is 5
--write-full-table string file path to output full table, default is ''
--help | -h flag to display help message and exit
Standard input:
input file paths
Standard output:
space-separated table of scores
Examples:
ls ./*.pdb | ftdmp-qa-all --conda-path ~/miniconda3 --workdir './tmp/works' --rank-names protein_protein_voromqa_and_global_and_gnn_no_sr
ls ./*.pdb | ftdmp-qa-all --workdir './tmp/works' --rank-names protein_protein_voromqa_no_sr
ls ./*.pdb | ftdmp-qa-all --conda-path ~/miniconda3 --workdir './tmp/works' --rank-names protein_protein_voromqa_and_global_and_gnn_no_sr \
--write-pdb-file './output/scored_-RANK-_-BASENAME-' --write-pdb-mode 'voromqa_dark_and_gnn' --write-pdb-num 5
Named collections of rank names, to be provided as a single string to '--rank-names':
protein_protein_voromqa_and_global_and_gnn_no_sr
protein_protein_voromqa_and_global_and_gnn_with_sr
protein_protein_voromqa_and_gnn_no_sr
protein_protein_voromqa_and_gnn_with_sr
protein_protein_voromqa_no_sr
protein_protein_voromqa_with_sr
protein_protein_simplest_voromqa
generalized_voromqa
Example of scoring using only interface-focused methods:
ls ./*.pdb \
| ftdmp-qa-all \
--rank-names protein_protein_voromqa_and_gnn_no_sr \
--conda-path ~/miniconda3 \
--workdir './works'
Example of scoring using both interface-focused and whole-structure methods:
ls ./*.pdb \
| ftdmp-qa-all \
--rank-names protein_protein_voromqa_and_global_and_gnn_no_sr \
--conda-path ~/miniconda3 \
--workdir './works'
Example of scoring with rebuilding side-chains:
ls ./*.pdb \
| ftdmp-qa-all \
--rank-names protein_protein_voromqa_with_sr \
--workdir './works'
Example of scoring without rebuilding side-chains:
ls ./*.pdb \
| ftdmp-qa-all \
--rank-names protein_protein_voromqa_no_sr \
--workdir './works'
Example of scoring:
ls ./*.pdb \
| ftdmp-qa-all \
--rank-names generalized_voromqa \
--workdir './works'
Docking and scoring is done with the ‘ftdmp-all’ script. Below is the breef description of ‘ftdmp-all’ interface.
'ftdmp-all' docks, scores and ranks complex structures of proteins or nucleic acids
Options:
--job-name string * job name
--pre-docked-input-dir string pre-docked input directory path
--static-file string hetero docking static input file path
--static-sel string hetero docking query to restrict static atoms, default is '[]'
--static-chain string hetero docking chain name or chain renaming rule to apply for static atoms, default is ''
--static-rotation-seed number random seed to initially rotate static part, default is 1
--mobile-file string hetero or homo docking mobile input file path
--mobile-sel string hetero or homo docking query to restrict mobile atoms, default is '[]'
--mobile-chain string hetero or homo docking chain name or chain renaming rule to apply for mobile atoms, default is ''
--mobile-rotation-seed number random seed to initially rotate mobile part, default is 2
--symmetry-docking string homo docking symmetry to apply for the mobile input file, default is ''
--subselect-contacts string query to subselect inter-chain contacts for scoring, default is '[]'
--constraints-required string query to check required inter-chain contacts, default is ''
--constraints-banned string query to check banned inter-chain contacts, default is ''
--constraint-clashes number max allowed clash score, default is ''
--reference string input structure file to compute CAD-score with, default is ''
--openmm-forcefield string forcefield name for OpenMM-based operations, default is ''
--ftdmp-root string ftdmp root path, default is '' (autodetected from the calling command)
--conda-path string conda installation path, default is ''
--conda-early string flag to activate conda as early as possible
--conda-env string conda main environment name, default is ''
--conda-env-for-gnn string conda GNN environment name, equals the main environment name if not set
--sam-parameters string additional SAM parameters, default is '-top=8000 -show=2000 -clusters=2000'
--use-ftdock string flag to use ftdock, default is 'true'
--use-hex string flag to use HEX, default is 'false'
--ftdock-keep number ftdock keep parameter, default is 1
--ftdock-angle-step number ftdock angle step parameter, default is 9
--ftdock-min-grid-sep number minimum grid separation between same-rotation translations, default is 20
--hex-macro-mode string flag to enable HEX macro mode, default is 'true'
--hex-max-solutions number max number of docking solutions for HEX, default is 10000
--hex-script string semicolon-sparated additional commands for HEX, default is ''
--hex-swap-and-repeat string flag to run HEX twice with monomers swapped, default is 'false'
--parallel-docking number number of processes to run when docking, default is 8
--parallel-scoring number number of processes to run when scoring, default is 8
--cache-dir string cache directory path to store results of past slower calculations
--sbatch-for-ftdock string sbatch parameters to run docking with ftdock in parallel, default is ''
--sbatch-for-hex-or-sam string sbatch parameters to run docking with HEX or SAM on cluster, default is ''
--sbatch-scoring string sbatch parameters to run scoring in parallel, default is ''
--score-symmetry string flag to score symmetry, default is 'false'
--local-columns string flag to add per-residue scores to the global output table, default is 'false'
--remap-cadscore string flag to use optimal chains remapping for CAD-score, default is 'false'
--geom-hash-to-simplify number number of instances per rotation to keep after first scoring, default is 0 to not do it
--scoring-full-top number number of top complexes to keep after full scoring stage, default is 1000
--scoring-full-top-slow number number of top complexes to keep before slow full scoring stage, default is 9999999
--scoring-rank-names string * rank names to use, or name of a standard set of rank names
--scoring-rank-names-x string extra rank names to use, default is 'all_plugin' to use plugin output columns (if any)
--scoring-ranks-top number number of top complexes to consider for each ranking, default is 100
--scoring-jury-slices string slice sizes sequence definition for ranks jury scoring, default is '5 20'
--scoring-jury-cluster number clustering threshold for ranks jury scoring, default is 0.9
--scoring-jury-maxs number number of max values to use for ranks jury scoring, default is 1
--redundancy-threshold number minimal ordered redundancy value to accept, default is 0.9
--plugin-scoring-script string path to executable script that outputs a table of scores for a PDB structure
--build-complexes number number of top complexes to build, default is 0
--multiply-chains string options to multiply chains, default is ''
--relax-complexes string options to relax complexes, default is ''
--all-ranks-for-relaxed string flag to use both scoring ranks of both raw and relaxed structures, default is 'true'
--only-dock-and-score string flag to only dock, score and quit after scoring, default is 'false'
--diversify number step of CAD-score to diversify scoring results and exit, default is ''
--plot-jury-scores string flag to output plot of jury scores, default is 'false'
--casp15-qa string flag to output CASP15 QA answer, default is 'false'
--casp15-qa-target string target name for outputting CASP15 QA answer, default is '_THETARGET_'
--casp15-qa-author-id string author ID for outputting CASP15 QA answer, default is '_THEAUTHOR_'
--output-dir string * output directory path
--help | -h flag to display help message and exit
Output:
All the docking and scoring results are placed into directory "${output_dir}/${jobname}"
Main results for raw (unrelaxed) complex models:
final ordered table with VoroIF-jury scores = "${output_dir}/${jobname}/raw_top_scoring_results_RJS_only.txt"
directory with built top complex models in PDB format = "${output_dir}/${jobname}/raw_top_complexes"
Main results for relaxed complex models:
directory with built and relaxed top complex models in PDB format = "${output_dir}/${jobname}/relaxed_top_complexes"
final ordered table with VoroIF-jury scores = "${output_dir}/${jobname}/relaxed_top_scoring_results_RJS_only.txt"
Examples:
ftdmp-all --job-name 'j1' --static-file './chainA.pdb' --mobile-file './chainB.pdb' \
--scoring-rank-names 'protein_protein_voromqa_and_global_and_gnn_no_sr' --output-dir './results'
ftdmp-all --job-name 'j2' --pre-docked-input-dir './predocked' \
--scoring-rank-names 'protein_protein_voromqa_and_gnn_no_sr' --output-dir './results'
Named collections of rank names, to be provided as a single string to '--scoring-rank-names':
protein_protein_voromqa_and_global_and_gnn_no_sr
protein_protein_voromqa_and_global_and_gnn_with_sr
protein_protein_voromqa_and_gnn_no_sr
protein_protein_voromqa_and_gnn_with_sr
protein_protein_voromqa_no_sr
protein_protein_voromqa_with_sr
protein_protein_simplest_voromqa
generalized_voromqa
Example script:
#!/bin/bash
STATICFILE="./input/bigger_molecule.pdb"
MOBILEFILE="./input/smaller_molecule.pdb"
JOBNAME="$(basename ${STATICFILE} .pdb)__$(basename ${MOBILEFILE} .pdb)"
sbatch --job-name=rdwf --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=4000 \
${HOME}/git/ftdmp/ftdmp-all \
--ftdmp-root ${HOME}/git/ftdmp \
--conda-path ${HOME}/miniconda3 \
--conda-early 'true' \
--parallel-docking 64 \
--parallel-scoring 128 \
--sbatch-for-ftdock '--job-name=ftdock --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=8000' \
--sbatch-for-hex-or-sam '--job-name=hexsam --partition=Cluster --ntasks=1 --cpus-per-task=8 --mem-per-cpu=8000' \
--sbatch-scoring '--job-name=dscore --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=8000' \
--job-name "$JOBNAME" \
--output-dir ./output \
--static-file "$STATICFILE" \
--static-sel '[]' \
--static-chain 'D=A,E=B' \
--mobile-file "$MOBILEFILE" \
--mobile-sel '[]' \
--mobile-chain 'C' \
--subselect-contacts '[-a1 [-chain A,B] -a2 [-chain C]]' \
--use-ftdock 'true' \
--use-hex 'false' \
--constraint-clashes 0.5 \
--ftdock-keep 10 \
--ftdock-angle-step 6 \
--geom-hash-to-simplify 1 \
--scoring-rank-names 'protein_protein_voromqa_and_global_and_gnn_no_sr' \
--scoring-full-top 3000 \
--scoring-ranks-top 100 \
--scoring-jury-maxs 1 \
--scoring-jury-slices '5 20' \
--scoring-jury-cluster "$(seq 0.70 0.01 0.90)" \
--redundancy-threshold 0.7 \
--build-complexes 200 \
--openmm-forcefield 'amber99sb' \
--relax-complexes '--max-iterations 0 --focus whole_interface' \
--cache-dir ./cache
Example script:
#!/bin/bash
STATICFILE="./input/bigger_molecule.pdb"
MOBILEFILE="./input/smaller_molecule.pdb"
JOBNAME="$(basename ${STATICFILE} .pdb)__$(basename ${MOBILEFILE} .pdb)"
sbatch --job-name=rdwf --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=4000 \
${HOME}/git/ftdmp/ftdmp-all \
--ftdmp-root ${HOME}/git/ftdmp \
--conda-path ${HOME}/miniconda3 \
--conda-early 'true' \
--parallel-docking 32 \
--parallel-scoring 64 \
--sbatch-for-ftdock '--job-name=ftdock --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=8000' \
--sbatch-for-hex-or-sam '--job-name=hexsam --partition=Cluster --ntasks=1 --cpus-per-task=8 --mem-per-cpu=8000' \
--sbatch-scoring '--job-name=dscore --partition=Cluster --ntasks=1 --cpus-per-task=1 --mem-per-cpu=8000' \
--job-name "$JOBNAME" \
--output-dir ./output \
--static-file "$STATICFILE" \
--static-sel '[]' \
--static-chain 'A' \
--mobile-file "$MOBILEFILE" \
--mobile-sel '(not [-rnum 1 -aname P,O1P,O2P,O3P,OP1,OP2,OP3])' \
--mobile-chain 'A=B,B=C' \
--subselect-contacts '[-a1 [-chain A] -a2 [-chain B,C]]' \
--use-ftdock 'true' \
--use-hex 'false' \
--constraint-clashes 0.9 \
--ftdock-keep 10 \
--ftdock-angle-step 6 \
--geom-hash-to-simplify 1 \
--scoring-rank-names 'generalized_voromqa' \
--scoring-full-top 3000 \
--scoring-ranks-top 200 \
--scoring-jury-maxs 1 \
--scoring-jury-slices '5 50' \
--scoring-jury-cluster "$(seq 0.70 0.01 0.90)" \
--redundancy-threshold 0.7 \
--build-complexes 200 \
--openmm-forcefield 'amber14-all-no-water' \
--relax-complexes '--max-iterations 10 --focus whole_interface' \
--cache-dir ./cache
Main essential changes when compared with the protei-protein docking case:
--scoring-rank-names 'generalized_voromqa'
--openmm-forcefield 'amber14-all-no-water' # now using a force field that is compatible with DNA and RNA
--relax-complexes '--max-iterations 10 --focus whole_interface' # now using iterations limit to not overdo the relaxation in absence of water
‘ftdmp-all’ can accept a plugin script that outputs one or more scoresa for an input model structure in PDB format. Such a script must:
Example of a plugin script:
#!/bin/bash
INFILE="$1"
OUTFILE="$2"
{
echo "Useful_Score1 Useful_Score2 Useful_Score3"
${HOME}/software/program_that outputs_three_scores "$INFILE"
} \
> "$OUTFILE"
Example of a plugin script output:
Useful_Score1 Useful_Score2 Useful_Score3
0.85 1.73 104.9
When providing a plugin script script file with
--plugin-scoring-script ./plugin.bash
and not providing anything with ‘–scoring-rank-names-x’, the default behaviour is to automatically use all the scores from the plugin script output.
Alternatively, space-separated score names with ‘raw_’ prefix can be provided, e.g.
--plugin-scoring-script ./plugin.bash --scoring-rank-names-x "raw_Useful_Score1 raw_Useful_Score3"
Important note - the plugin scores are assummed to be “the higher, the better”, i.e. for ranking they are sorted in descending order.
Relaxing is done with the ‘ftdmp-relax-with-openmm’ script. After relaxing, model structures can be rescored and reranked with the ‘ftdmp-qa-all’ script. It is advised to do it on a machine with a nice GPU. Below is the breef description of ‘ftdmp-relax-with-openmm’ interface.
'ftdmp-relax-with-openmm' script relaxes a molecular structure using OpenMM.
Options:
--input string * input file path
--output string * output file path, setting to '_same_as_input' will overwrite input file
--focus string focus mode, default is 'whole_structure', others are: 'interface_side_chains', 'whole_interface', 'not_interface'
--focus-base string selection of atoms that can be in a partial structure focus, default is '[]'
--focus-first-sel string first selection of atoms to define interface not by chains, default is ''
--focus-second-sel string second selection of atoms to define interface not by chains, default is ''
--conda-path string conda installation path, default is ''
--conda-env string conda environment name, default is ''
--forcefield string forcefield combo name, default is 'amber99sb', others are: 'amber14-all', 'amber14-all-no-water', 'charmm36'
--main-forcefield string main forcefield name, default is defined by the combo name, some others are: 'amber99sb', 'amber14-all', 'charmm36'
--water-forcefield string water forcefiled name, default is defined by the combo name, some others are: '', 'amber99_obc', 'amber14/tip3pfb', 'charmm36/water'
--max-iterations number max number of iterations, default is 100
--score-at-end string mode for scoring interface at the end, default is '', others are: 'fast_iface', 'full_iface', 'full'
--scoring-params string additional parameters for scoring, default is ''
--multiple-tries number number of tries to generate and score interfaces, default is ''
--cache-dir string cache directory path to store results of past calls
--force-cuda flag to force the platform to be CUDA
--trim-output flag to restrict output to atoms of proteins and nucleic acids
--no-preparation flag to not run any preparation of input structure before simulations
--limit-preparation flag to only add solvent if needed in the preparation stage
--full-preparation flag to turn off all preparation disabling flags
--no-simulation flag to not run any simulations
--help | -h flag to display help message and exit
Standard output:
space-separated table of scores for both input and output
Examples:
ftdmp-relax-with-openmm --input model.pdb --output relaxed_model.pdb
ftdmp-relax-with-openmm --conda-path ~/miniconda3 --forcefield amber14-all \
-i model.pdb -o relaxed_model.pdb --score-at-end fast_iface --trim-output
Using the ‘amber14-all-no-water’ forcefield, the example below works for protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid interfaces.
find "./models/raw/" -type f -name '*.pdb' \
| while read -r INFILE
do
OUTFILE="./models/relaxed/$(basename ${INFILE})"
${HOME}/git/ftdmp/ftdmp-relax-with-openmm \
--conda-path ${HOME}/miniconda3 \
--conda-env '' \
--force-cuda \
--full-preparation \
--forcefield 'amber14-all-no-water' \
--max-iterations 10 \
--focus "whole_interface" \
--input "$INFILE" \
--output "$OUTFILE" \
--cache-dir ./workdir/relax_cache
done